Analysis of stunter1, a maize mutant with reduced gametophyte size and maternal effects on seed development.
نویسندگان
چکیده
Many higher eukaryotes have evolved strategies for the maternal control of growth and development of their offspring. In higher plants this is achieved in part by postmeiotic gene activity controlling the development of the haploid female gametophyte. stunter1 (stt1) is a novel, recessive, maternal effect mutant in maize that displays viable, miniature kernels. Maternal inheritance of stt1 results in seeds with reduced but otherwise normal endosperms and embryos. The stt1 mutation displays reduced transmission through the male and female parents and causes significant changes in the sizes of both male and female gametophytes. stt1 pollen grains are smaller than wild type, have reduced germination efficiency, and reduced pollen tube growth. stt1 embryo sacs have smaller central cells and abnormal antipodal cells that are larger, more vacuolated, and fewer in number than wild type. Embryos and endosperms produced by fertilization of stt1 embryo sacs develop and grow more slowly than wild type. The data suggest that the morphology of mutant embryo sacs influences endosperm development, leading to the production of miniature kernels in stt1. Analysis of seeds carrying a mutant maternal allele of stt1 over a deletion of the paternal allele demonstrates that both parental alleles are active after fertilization in both the endosperm and embryo. This analysis also indicates that embryo development until the globular stage in maize can proceed without endosperm development and is likely supported directly by the diploid mother plant.
منابع مشابه
Maternal Gametophyte Effects on Seed Development in Maize
Flowering plants, like placental mammals, have an extensive maternal contribution toward progeny development. Plants are distinguished from animals by a genetically active haploid phase of growth and development between meiosis and fertilization, called the gametophyte. Flowering plants are further distinguished by the process of double fertilization that produces sister progeny, the endosperm ...
متن کاملInteraction between maternal effect and zygotic effect mutations during maize seed development.
Double fertilization of the embryo sac by the two sperm cells of a pollen grain initiates seed development. Proper development of the seed depends not only on the action of genes from the resulting embryo and endosperm, but also on maternal genes acting at two stages. Mutations with both sporophytic maternal effects and gametophytic maternal effects have been identified. A new maternal effect m...
متن کاملPloidy barrier to endosperm development in maize.
Maize kernels inheriting the indeterminate gametophyte mutant (ig) on the female side had endosperms that ranged in ploidy level from diploid (2x) to nonaploid (9x). In crosses with diploid males, only kernels of the triploid endosperm class developed normally. Kernels of the tetraploid endosperm class were half-sized but with well-developed embryos that regularly germinated. Kernels of endospe...
متن کاملParent-of-Origin-Effect rough endosperm Mutants in Maize.
Parent-of-origin-effect loci have non-Mendelian inheritance in which phenotypes are determined by either the maternal or paternal allele alone. In angiosperms, parent-of-origin effects can be caused by loci required for gametophyte development or by imprinted genes needed for seed development. Few parent-of-origin-effect loci have been identified in maize (Zea mays) even though there are a larg...
متن کاملTiming of the maternal-to-zygotic transition during early seed development in maize.
In animals, early embryonic development is largely dependent on maternal transcripts synthesized during gametogenesis. Recent data in plants also suggest maternal control over early seed development, but the actual timing of zygotic genome activation is unclear. Here, we analyzed the timing of the maternal-to-zygotic transition during early Zea mays seed development. We show that for 16 genes e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 187 4 شماره
صفحات -
تاریخ انتشار 2011